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Abstract	 

A global   high resolution land surface dataset (GLSD) with universal        latitude/longitude grid   
coordinate is developed at N   OAA Air Resources Laboratory (ARL) for the applications to land,           
weather, and atmospheric composition models. The GLSDs include key land surface properties             
based on various operational     satellite measurements (e.g. MODIS, VIIRS      and GEDI), including    
land surface type, vegetation clumping index, leaf area index, vegetative canopy height, and             
green  vegetation fraction. Critical    processing steps are taken to extend the surface properties          
for a full   global  coverage, as well    as gap-filling within data points that are not available. All        
GLSDs are gridded to universal      global  latitude/longitude gridded coordinates (-   90° –  90° in  
latitude and 0° – 360° in longitude) with a consistent spatial          resolution of 0.01° (~ 1 km).       The  
GLSDs are now available at the N     ational  Centers for Environmental    Information (N CEI;  
downloaded from https://doi.org/10.25921/qzm2-zg29) for one year period representative of          
2020. Given the high spatiotemporal      resolution from satellite products, the novel       GLSDs can   
provide more realistic, updated surface information to the earth modeling systems rather than              
using prescribed surface type dependent tables and parameterizations, which are commonly           
used across the N   OAA Unified Forecast System (UFS) model      components (e.g., land, weather,     
and atmospheric composition models). The major uncertainties in the GLSDs lie in the              
discrepancies of sur  face type classification in different satellite products, and the simple          
climatological  approach used for gap filling. To deal        with these issues, additional     fractional  
surface type dataset and improved gap filling processes using machine learning technique          s are   
proposed for future developments.     
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1.  Introduction 	

Currently, many land surface models (e.g. the N       oah land surface model; Ek      et al., 2003) used in     
regional  and global   Earth System Models (ESMs) rely on prescribed surface type dependent          
tables and parameterizations to constrain vital       physical  parameters controlling geophysical    
fluxes due to the description of the land surface. Since the land surface is an essential                 
component in the Earth system, prescribed land surface data may not explicitly represent the           
realistic land surface properties in space and time, and could lead to potential              uncertainties in   
ESMs such as the land, weathe     r and   air composi tion mode l  components (F isher et al.,   2020;  
Johannsen et al., 2019; N   ogueira et al., 2020).    

To reduce such uncertainty, Earth observation systems such as satellites can provide             
measurements of the land surface characteristics with improved spatial          and temporal   
resolutions. For instance, the Moderate Resolution Imaging Spectroradiometer (MODIS;          
https://modis.gsfc.nasa.gov/about/) sensors onboard the Aqua and Terra satellites and the         
Visible Infrared Imaging Radiometer Suite (VIIRS;       https://www.nesdis.noaa.gov/our-
satellites/currently-flying/joint-polar-satellite-system/visible-infrared-imaging-radiometer-
suite-viirs) sensor onboard the Suomi      National  Polar-orbiting Partnership (S-N  PP) satellite have    
been widely used in Earth science research. The multiple spectrum channels with a wide              
spectral  range from near infrared to ultraviolet allow these sensors to provide var          ious products   
of Earth land surface properties and vegetative canopy characteristics (Justice et al., 2002,             
2013). In addition, the Global      Ecosystem Dynamics Investigation (GEDI;     https://gedi.umd.edu/),  
which is a lidar instrument onboard the International       Space Station (ISS), provides the two     - and  
three-dimensional  structure of vegetati  ve canopies such as for    ests, incl uding canopy he  ight,  
biomass density, and the distribution of stems and leaves (Dubayah et al., 2020). Previous              
studies have demonstrated that applying satellite land surface products to land models would             
improve the simulations of soil      moisture and surface fluxes (Li      et al., 2024), even leading to      
significant improvements in weather predictions such as surface air temperature (N         ogueira et 
al., 2020; Ruiz-Vásquez et al., 2023). Use of seasonal        vegetative canopy information from     
satellite products could better represent the Earth surface more realistically and improve the             
atmospheric-surface exchanging processes within the boundary layer (van der Graaf, et al.,            
2020). However, most satellite products have diverse sources and data formats, as well            as  
limitations in their spatiotemporal     coverage, which introduces difficulties for researchers a      nd 
operational  centers to integrate them into ESMs.       

Hence, N OAA Air Resources Laboratory (ARL) Atmospheric Sciences Modeling Division (ASMD)           
has developed a global    land surface dataset (GLSD) with universal      grid coordinates for ESM    
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applications based on a suite of operational satellite products. Five major land surface 
properties are included: surface type (ST), vegetation clumping index (CLU), vegetation leaf area 
index (LAI), vegetative canopy height (CH), and green vegetation fraction (GVF). The temporal 
resolution of each dataset may be different based on the characteristics of land surface 
property and the original temporal frequency of satellite products. The ST and CH datasets are 
on an annual basis since they are relatively consistent in terms of seasonal variability, while the 
CLU, LAI and GVF datasets are monthly for their seasonality. 
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2.  Global	 Land	 Surface	 Datasets 	

2.1	 Data 	Processes	 

Table 1 summarizes the GLSDs included in this dataset, along with data periods, and the original                
satellite products and spatiotemporal     resolution. Because of the lack of sunlight in high         
latitudes during winter months, the passive MODIS        and VIIRS   satellite  retrievals ( e.g.,  for CLU,  
LAI, and GVF    products) often have no data beyond 60°N and many gaps in mid to high latitudes               
across the expansive land areas in the N       orth Hemisphere. These datasets are globally extended        
for high latitude regions to obtain full global         coverage. The gap-filling approaches vary by the        
GLSDs based on the characteristics of different land surface properties. Details on the gap filling               
are described in the following sections.       

Table 1: List  of  the  GLSDs  included  in  this  dataset, along  with  the  data  period, frequency, original data  source, and  spatial 
and  temporal  resolutions.  

 Dataset  Data 
 period/Frequency 

 Original 
Spatial/Temporal 

 resolution 
 Data source 

   Surface type (ST)  2020/Annual  1 km/Annual   VIIRS 
Clumping index (CLU)   2001 – 2017/Monthly    500 m/Monthly  MODIS 

   Leaf area index (LAI)  2020/Monthly  500 m/8-day  VIIRS 
  Canopy height (CH)  2020/Annual   10 m/Annual GEDI  

    Green vegetation fraction (GVF) 
 

 2020/Monthly  4 km/Weekly  VIIRS 

	

After global   extension and gap filling for certain GLSDs, all         GLSDs are gridded to universal      global  
latitude/longitude gridded coordinates (-   90° - 90° in latitude and 0° -      360° in longitude) with a     
spatial  resolution of 0.01°. The re-gridding is done by the griddata function from the Python              
Scipy  package  
(https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html), except  
for ST whose re-gridding method is described in Section 2.2. Example visualization graphics are            
generated using Python Matplotlib package (Hunter, 2007;        https://matplotlib.org/), and the    
shapefile of the global     coastlines overlaid on the graphics is downloaded from N        atural  Earth  
Data (https://www.naturalearthdata.com/).  

2.2	 Surface	Type	 

The annual   ST is based on the VIIRS       surface type product (Huang et al., 2023;      
https://www.star.nesdis.noaa.gov/jpss/st.php), which includes 17 ST categories globally based         
on the International    Geosphere–Biosphere Program (IGBP) classification (Belward and       
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Loveland, 1997). Figure 1 visualizes the annual        global  ST of 2020 with 17 categories. Please see         
the cited reference for detailed description of each ST category.           

Figure 1. Annual global surface  type  of 2020. The  17  surface  type  categories  are  1) E vergreen  Needleleaf Forests  (ENF), 2)  
Evergreen  Broadleaf  Forests  (EBF),  3)  Deciduous  Needleleaf  Forests  (DNF),  4)  Deciduous  Broadleaf  Forests  (DEF),  5)  Mixed  
Forests  (MxF),  6) Closed  Shrublands  (CSh),  7) Open  Shrublands  (OSh),  8) Woody S avannas  (WSV),  9) Savannas  (SV),  10) 
Grasslands  (GL),  11)  Permanent  Wetlands  (Wet),  12)  Croplands  (Crop),  13)  Urban  and  Built-up Lands  (Urban),  14)  
Cropland/Natural  Vegetation  Mosaics  (Mos),  15)  Snow  and Ice  (Snow),  16)  Barren (Bar),  and 17)  Water  Bodies  (Water).  

This product is the heritage of the MODIS        global  land cover product (Friedl    et al., 2010; Friedl    
and Sulla-Menashe, 2015) by following the same retrieval         algorithms. Two ST products show a      
good agreement in general    while inconsistencies were found at high latitude regions (Moon et         
al., 2019; Zhang et al., 2018). The original        1 km coordinate is re-gridded to the global         0.01° x   
0.01° coordinate by following a dominant ST approach. The ST value at a grid cell            in the new    
coordinate is determined as the ST value        with the most data points    from  the original   coordinate  
within that grid area. Therefore, the ST dataset provides the dominant terrestrial          ST, which   
describes the surface characteristics of the majority of the land surface within the area of each                
grid cell.   
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2.3	 Vegetation 	Clumping 	Index 	

The monthly global    CLU is based on the MODIS       Bidirectional  Reflectance Distribution Function    
(BRDF) product (Wei   et al., 2019) downloaded from the GriddingMachine (Wang et al., 2022;          
https://github.com/CliMA/GriddingMachine.jl). Due to measurement limitation, many missing       
data are found over mid to high latitude regions in the N          orth Hemisphere during winter. The      
gaps are filled for high latitude regions by converting summertime values (           ���!) to wintertime    
values ( ���") based on the ratio of monthly averages in 2003 –            2017 using MODIS   analyses  
from Fang et al. (2021):     

���" = ���! × �"/!   Eq. (1)  

where �"/!  is the ratio of the CLU average of selected winter month to the CLU average of                 
selected summer month. The monthly averages are ST dependent, which is based on the ST                
dataset described in Section 2.2. The monthly average in July is used as the summer standard                
(i.e. ���!), and the missing gaps in the N       orth Hemisphere   from late fall    to early spring (January,     
February, March, April, May, October, N     ovember and December) are filled. Only regions with         
significant vegetation covered (  e.g.,  ST equals 1 – 12 reported in Fang et al. (2021)) are            
considered in this process. Figure 2 shows the monthly CLU average in (a) July 2020, (b) January                  
2020 before gap filling, and (c) January 2020 after gap filling.             

Figure 2. Monthly  averages  of global vegetation  clumping  index  in  (a) J uly, (b) J anuary  before  gap  filling  and  re-gridding,  and  
(c) January 2 020.  The d atasets  shown  in  (a) and  (c) have b een  re-gridded  to  0.01°  coordinate.  

Although the cropland/natural    vegetation mosaics (Mos; ST = 14, see Figure 1) is not included in            
this process, the result should not be significantly affected since Mos only accounts for around              
1.5% in the N  orth Hemisphere . In addition, Fang et al. (2021) used MODIS         land cover type    
product (Friedl  and Sulla-Menashe, 2015;    https://lpdaac.usgs.gov/products/mcd12c1v006/) for  
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ST categorization, while the ST dataset here is based on VIIRS           product. Based on the     
investigations done by    previous studies (  e.g.,  Moon et al., 2019) and the same retrieval        
algorithms used for both products, the ST classifications are assumed to be consistent in two               
products.   

2.4	 Vegetation	 Leaf	 Area	 Index	 

The monthly global    LAI is from the VIIRS     LAI product (Myneni  and K nyazikhin, 2018;   
https://doi.org/10.5067/VIIRS/VNP15A2H.001). Similar to CLU (Section 2.3), the wintertime         
high latitude gaps are filled by converting summertime values (         ���!) to wintertime values     
(���") based on the ratio of monthly averages in 2003 –            2017 using MODIS   analyses from Fang    
et al. (2021):   

���" = ���! × �"/!      Eq. (2)  

where �"/!  is the ratio of the LAI average of selected winter month to the LAI average of               
selected summer standard month (i.e.      ���!). Similar to the CLU process, the monthly averages          
are ST dependent (Section 2.2), and the missing gaps in the N          orth Hemisphere   from late fall    to  
early spring (i.e. January, February, March, April, May, October, N         ovember and December) are     
filled for STs equal     to 1 – 12 only by assuming a relatively minor contribution from Mos (ST =              
14). Figure 3 shows the monthly LAI average in (a) July 2020, (b) January 2020 before gap filling,                  
and (c) January 2020 after gap filling. N       ote that the Fang et al. LAI climatological      monthly  
averages were also based on MODIS       STs, and the assumption of consistent ST classifications        
from MODIS   and VIIRS   ST products are made when mapping to VIIRS         STs.  

Figure 3. Monthly  averages  of global vegetation  leaf area  index  in  (a) J uly, (b) J anuary  before  gap  filling  and  re-gridding,  and  
(c) January 2 020.  The d atasets  shown  in  (a) and  (c) have b een  re-gridded  to  0.01°  coordinate.  
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2.5	 Vegetative	 Canopy	 Height 	

The annual   CH dataset is based on the global      GEDI product developed by Lang et al. (2023) and       
Figure 4 visualizes the annual      global  CH of 2020. Limited by the space orbit of ISS, the original           
GEDI measurements only provide a spatial     coverage between 52°S    and 52°N . In Lang et al.     
(2023), GEDI CH dataset is extended to a comprehensive global       map by fusing it with the      
satellite images from Sentinel-   2 
(https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2) using deep machine     
learning models. Since this product is already globally extended, gap filling process is not             
required  here.   

 

Figure 4. Annual global vegetative  canopy  height  of 2020.  
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2.6	 Green	Vegetation	Fraction	 

The annual   global  GVF  is based on the VIIRS      green vegetation fraction product (Jiang et al.,      
2021; https://www.star.nesdis.noaa.gov/jpss/gvf.php), which provides the fractional      green  
vegetation cover on a weekly basis. Similar to CLU and LAI, many missing data are found over                
high latitude regions in the N     orth Hemisphere due to the lack of sunlight during winter.           

The gaps are filled by estimated fractional        vegetation cover (FVC) based on vegetation indices        
(VI)  such as CLU and LAI (Gao et al., 2020; K       uusk et al., 2018; N   ilson, 1971). LAI is technically     
defined as the amount of green leaf area per unit ground surfac        e area, and is generally used as        
an indicator of greenness in canopy models (Fang et al., 2019). Hence, a VI-based estimated              
FVC can provide a good proxy of the GVF         for certain STs (e.g., broadleaf forests) during some         
seasons (e.g., summer), but this relationship can have more uncertainty when the non-           green  
components of the vegetation are relatively large for other STs (e.g., needleleaf forests) and               
seasons (e.g., winter). To fill      the gaps, a global    VI-based estimation of FVC map is first generated        
following the formulations from Gao et al. (2020) and K        uusk et al. (2018):    

��� = 1 − �(0)     Eq. (3)  

�(0)  is the canopy gap fraction at a zenith angle equal         to zero degree, and can be calculated as:         

�(0) = �$%&'×)×&*+   Eq. (4)  

where �  is the Ross–Nilson ge   ometry functi on (the G-function; Ross, 1981) that describes the        
effect of a unit of leaf area on radiation attenuation.       � = 0.5  is used here by assuming a zenith       
angle of zero degree based on Figure 1 in Stenberg (2006). The global              gap-filled CLU and LAI    
maps discussed in Section 2.3 and 2.4, respectively, are used here.              

Moreover, to reduce the inconsistency between VIIRS        GVF  and calculated VIIRS    VI-based FVC,   
the latter is corrected based on the linear regression between two datasets:             

��� = �(��) × ��� + �(��)    Eq. (5)  

The ST dependent regression coefficients     �(��)  and  �(��)  are calculated based on the data at      
lower latitude areas (   e.g.,  < 60N) where VIIRS    GVF  is available. The ST classification is based on         
the VIIRS-based ST dataset described in Section 2.2. Similar to the gap-          filling process for CLU  
and LAI, the missing gaps in the N       orth Hemisphere from late fall      to early spring (i.e. J    anuary,  
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February, March, April, May, October, November and December) are filled for STs equal to 1 – 
12 only by assuming a relatively minor contribution from Mos (ST = 14). 

Figures 5 and 6 show the scatter density plots and linear regressions of monthly VIIRS GVF and 
VI-based FVC of January for all ST and each ST category, respectively, while Figure 7 
demonstrates the monthly global GVF datasets of 2020 before and after gap filling. The 
coefficient of determination (R2) for all ST is 0.79. The deciduous broadleaf forest (DBF, ST = 4) 
shows the highest R2 of 0.92, followed by the grassland (GL, ST = 10) with a R2 value of 0.88. The 
deciduous needleleaf forest (DNF, ST = 3) shows the lowest R2 of 0.02, probably associated with 
the contributions of non-green components of vegetation (e.g., stems) during wintertime. 

Figure 5. Scatter density plot of VI-based FVC estimation and VIIRS GVF for all ST. The shedding color shows the data density, 
and the magenta line represents the linear regression of two datasets. 
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Figure 6. Scatter density plots of VI-based FVC estimation and VIIRS GVF for (a) ENF, (b) EBF, (c) DNF, (d) EDF, (e) MxF, (f) CSh, 
(g) Osh, (h) WSV, (i) SV, (j) GL, (k) Wet, (l) Crop. The shedding color shows the data density, and the magenta line represents 
the linear regression of two datasets. 

Figure 7. Monthly averages of global green vegetation fraction in (a) July, (b) January before gap filling and re-gridding, and 
(c) January 2020. The datasets shown in (a) and (c) have been re-gridded to 0.01° coordinate. 
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3.  Discussion	 

The major uncertainty of the GLSDs comes from the          discrepancies of ST classification among      
different satellite products. Although most MODIS     and VIIRS   products follow the IGBP     
classification with standard 17 ST categories and the same retrieval           algorithms, the differences    
in the spectrum channels, instrum    ent calibration processes, and spatial     resolution could lead to     
inconsistencies in the ST classifications. Such inconsistencies in the products of two satellites              
may affect the global    extension and gap filling process, which are ST based, for the CLU, LAI             and  
GVF  datasets. Replacing MODIS-based products (e.g., CLU and the climatological          values used for    
gap filling) with VIIRS-based pr    oducts would i  mprove the reliability of the GLS     Ds and mak  e  
them a more unified dataset by removing instrumental       uncertainties  from and using consistent    
satellite measurements in the data processing for a single GLSD.         

In addition, the ST dataset provides the dominant ST of each grid cell            and may miss the     
fractional  contributions from other surrounding vegetation types This may have significant          
implications for averaging the CH dataset across the area of each grid cell,           especially in regions    
of high spatial    heterogeneity. For example, most of the regions over the southeast US          are  
identified as forests (i.e. ST = 1 – 5) and about 30% is mixed forest (ST = 5). However, around 5%                  
of these forest regions show CH values less than 10 m, probably affected by the relatively short,                
surrounding grasslands and croplands after averaging.        

Another uncertainty lies in the simple gap filling approach based on climatological             monthly  
averages, which inherently miss higher temporal       variability. Furthermore, the summer standard      
values used for global     extension are also satellite based and could be         affected by similar    
instrument limitations (e.g., the amount and quality of samples).         

Finally, the linear regression used to correct VI-based FVC to VIIRS           GVF  is fairly oversimplified,    
leading to potential    uncertainties. To deal    with this issue, machine learning algorithms, such as         
random forest (Breiman, 2001; Segal, 2004) and neural        network (Uhrig, 1995), can be used to        
improve the gap-filling process. Specifically, a more explicit machine learning based regression           
model of VI-based FVC and VIIRS     GVF  can be ge  nerated  and appl ied  to GVF   correction for   
advanced accuracy.    
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4.  Summary 	

A global   land surface dataset (GLSD) for five major land surface properties including surface            
type (ST), vegetation clumping index (CLU), vegetation leaf area index (LAI), vegetative canopy             
height (CH), and green vegetation fractions (GVF) is developed at         NOAA ARL. The GLSDs share a      
universal  global  latitude/longitude gridded coordinate with a spatial      resolution of 0.01°    (~ 1  
km). The GLSDs are based on a suite of operational          satellite products from MODIS, VIIRS      and  
GEDI. Some satellite products (    e.g.,  CLU,  LAI, and GVF) are globally extended and gap-       filled for  
mid to high latitude regions in the N       orth Hemisphere. After gap filling, all       GLSDs are re  -gridded  
to 0.01° x 0.01° coordinate with a coverage of -        90° - 90° in latitude and 0° -      360° in longitude.    
The  major uncertainties lie in the discrepancies of ST classification in different satellite            
products, and the simple linear regressions used for gap filling and GVF             estimation correction.    

Currently, GLSDs are available for one year period representative of 2020. The gridded N             etCDF  
data format is beneficial   for applications to Earth System Models (ESMs) such as land, weather,            
and air composition models. The LAI and CH datasets are being applied and tested in the next              -
generation UFS   Air Quality Model    (AQM) at N OAA, and while not shown here, can lead to         
improvement in the spatial    representation of explicit vegetative canopy effects on surface air         
quality ( e.g.,  ozone concentrations) and meteorological     (e.g.,  temperature and wind speed)     
predictions over the canopy regions in the US. In the future, an additional              fractional  ST dataset,   
which introduces the fraction of different STs within each grid cell, and VIIRS           -based datasets   
will  be developed and be used to improve the gap filling processes in a more unified fashion.                
Machine learning algorithms such as neural       network and random forest, which are popular        
machine learning tools for simulating the complex correlations between datasets, can be used              
to improve the gap filling process and the correction process of VI           -based FVC estimation. GLSDs     
for multiple years will     also be available in the future.       
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5.  Data	Av ailability	 

The GLSDs is now available for one year period representative of 2020 at the N             ational  Centers  
for Environmental   Information (N CEI) and can be downloaded from       
https://doi.org/10.25921/qzm2-zg29.  
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